
3/12/22, 5:22 PM Opaque pointer - Wikipedia

https://en.wikipedia.org/wiki/Opaque_pointer#C++ 1/6

Opaque pointer
In computer programming, an opaque pointer is a special case of an opaque data type, a data type declared to be a pointer to a record or data
structure of some unspecified type.

Opaque pointers are present in several programming languages including Ada, C, C++, D and Modula-2.

If the language is strongly typed, programs and procedures that have no other information about an opaque pointer type T can still declare
variables, arrays, and record fields of type T, assign values of that type, and compare those values for equality. However, they will not be able to
de-reference such a pointer, and can only change the object's content by calling some procedure that has the missing information.

Opaque pointers are a way to hide the implementation details of an interface from ordinary clients, so that the implementation may be changed
without the need to recompile the modules using it. This benefits the programmer as well since a simple interface can be created, and most details
can be hidden in another file.[1] This is important for providing binary code compatibility through different versions of a shared library, for
example.

This technique is described in Design Patterns as the Bridge pattern. It is sometimes referred to as "handle classes",[2] the "Pimpl idiom" (for
"pointer to implementation idiom"),[3] "Compiler firewall idiom",[4] "d-pointer" or "Cheshire Cat", especially among the C++
community.[2]

Examples
Ada
C
C++

See also
References
External links

Contents

https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Opaque_data_type
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Pointer_(computer_science)
https://en.wikipedia.org/wiki/Record_(computer_science)
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Ada_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/D_(programming_language)
https://en.wikipedia.org/wiki/Modula-2
https://en.wikipedia.org/wiki/Strong_typing
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Subroutine
https://en.wikipedia.org/wiki/Variable_(programming)
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Reference_(computer_science)
https://en.wikipedia.org/wiki/Implementation_(computing)
https://en.wikipedia.org/wiki/Interface_(computer_science)
https://en.wikipedia.org/wiki/Implementation_(computing)
https://en.wikipedia.org/wiki/Module_(programming)
https://en.wikipedia.org/wiki/Binary_code_compatibility
https://en.wikipedia.org/wiki/Shared_library
https://en.wikipedia.org/wiki/Design_Patterns
https://en.wikipedia.org/wiki/Bridge_pattern
https://en.wikipedia.org/wiki/Handle_(computing)

3/12/22, 5:22 PM Opaque pointer - Wikipedia

https://en.wikipedia.org/wiki/Opaque_pointer#C++ 2/6

The type Handle is an opaque pointer to the real implementation, that is not defined in the specification. Note that the type is not only private (to
forbid the clients from accessing the type directly, and only through the operations), but also limited (to avoid the copy of the data structure, and
thus preventing dangling references).

These types are sometimes called "Taft types"—named after Tucker Taft, the main designer of Ada 95—because they were introduced in the so-
called Taft Amendment to Ada 83.[5]

Examples

Ada

package Library_Interface is

 type Handle is limited private;

 -- Operations...

private

 type Hidden_Implementation; -- Defined in the package body

 type Handle is access Hidden_Implementation;

end Library_Interface;

package body Library_Interface is

 type Hidden_Implementation is record

 ... -- The actual implementation can be anything

 end record;

 -- Definition of the operations...

end Library_Interface;

C

/* obj.h */

struct obj;

/*

 * The compiler considers struct obj an incomplete type. Incomplete types

https://en.wikipedia.org/w/index.php?title=Tucker_Taft&action=edit&redlink=1

3/12/22, 5:22 PM Opaque pointer - Wikipedia

https://en.wikipedia.org/wiki/Opaque_pointer#C++ 3/6

This example demonstrates a way to achieve the information hiding (encapsulation) aspect of object-oriented programming using the C language.
If someone wanted to change the definition of struct obj, it would be unnecessary to recompile any other modules in the program that use the
obj.h header file unless the API was also changed. Note that it may be desirable for the functions to check that the passed pointer is not NULL,
but such checks have been omitted above for brevity.

 * can be used in declarations.

 */

size_t obj_size(void);

void obj_setid(struct obj *, int);

int obj_getid(struct obj *);

/* obj.c */

#include "obj.h"

struct obj {

 int id;

};

/*

 * The caller will handle allocation.

 * Provide the required information only

 */

size_t obj_size(void) {

 return sizeof(struct obj);

}

void obj_setid(struct obj *o, int i) {

 o->id = i;

}

int obj_getid(struct obj *o) {

 return o->id;

}

C++

/* PublicClass.h */

#include <memory>

class PublicClass {

https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Encapsulation_(computer_science)
https://en.wikipedia.org/wiki/Object-Oriented_Programming
https://en.wikipedia.org/wiki/API

3/12/22, 5:22 PM Opaque pointer - Wikipedia

https://en.wikipedia.org/wiki/Opaque_pointer#C++ 4/6

The d-pointer pattern is one of the implementations of the opaque pointer. It is commonly used in C++ classes due to its advantages (noted
below). A d-pointer is a private data member of the class that points to an instance of a structure. This method allows class declarations to omit
private data members, except for the d-pointer itself.[6] As a result,

 public:

 PublicClass(); // Constructor

 PublicClass(const PublicClass&); // Copy constructor

 PublicClass(PublicClass&&); // Move constructor

 PublicClass& operator=(const PublicClass&); // Copy assignment operator

 PublicClass& operator=(PublicClass&&); // Move assignment operator

 ~PublicClass(); // Destructor

 // Other operations...

 private:

 struct CheshireCat; // Not defined here

 std::unique_ptr<CheshireCat> d_ptr_; // Opaque pointer

};

/* PublicClass.cpp */

#include "PublicClass.h"

struct PublicClass::CheshireCat {

 int a;

 int b;

};

PublicClass::PublicClass()

 : d_ptr_(std::make_unique<CheshireCat>()) {

 // Do nothing.

}

PublicClass::PublicClass(const PublicClass& other)

 : d_ptr_(std::make_unique<CheshireCat>(*other.d_ptr_)) {

 // Do nothing.

}

PublicClass::PublicClass(PublicClass&& other) = default;

PublicClass& PublicClass::operator=(const PublicClass &other) {

 *d_ptr_ = *other.d_ptr_;

 return *this;

}

PublicClass& PublicClass::operator=(PublicClass&&) = default;

PublicClass::~PublicClass() = default;

3/12/22, 5:22 PM Opaque pointer - Wikipedia

https://en.wikipedia.org/wiki/Opaque_pointer#C++ 5/6

more of the class implementation is hidden
adding new data members to the private structure does not affect binary compatibility
the header file containing the class declaration only needs to include those files needed for the class interface, rather than for its
implementation.

One side benefit is that compilations are faster because the header file changes less often. Note, possible disadvantage of d-pointer pattern is
indirect member access through pointer (e.g., pointer to object in dynamic storage), which is sometimes slower than access to a plain, non-
pointer member. The d-pointer is heavily used in the Qt[7] and KDE libraries.

Application binary interface
Handle (computing)
Programming idiom

1. Chris McKillop. "Programming Tools — Opaque Pointers" (http://community.qnx.com/sf/docman/do/downloadDocument/projects.toolchain/doc
man.root.articles/doc1150). QNX Software Systems. Retrieved 2019-01-16.

2. Bruce Eckel (2000). "Chapter 5: Hiding the Implementation" (http://web.mit.edu/merolish/ticpp/Chapter05.html). Thinking in C++, Volume 1:
Introduction to Standard C++ (https://archive.org/details/thinkinginc00ecke) (2nd ed.). Prentice Hall. ISBN 0-13-979809-9.

3. Vladimir Batov (2008-01-25). "Making Pimpl Easy" (http://ddj.com/cpp/205918714). Dr. Dobb's Journal. Retrieved 2008-05-07.
4. Herb Sutter. The Joy of Pimpls (or, More About the Compiler-Firewall Idiom) (http://www.gotw.ca/publications/mill05.htm)
5. Robert A. Duff (2002-07-29). "Re: What's its name again?" (http://groups.google.es/group/comp.lang.ada/msg/a886bf7922727acf).

Newsgroup: comp.lang.ada (news:comp.lang.ada). Retrieved 2007-10-11.
6. Using a d-Pointer (https://community.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B%2B#Using_a_d-Pointer) — Why and how

KDE implements opaque pointers
7. "D-Pointer" (https://wiki.qt.io/D-Pointer). Qt wiki. Retrieved 23 Dec 2016.

The Pimpl idiom (http://c2.com/cgi/wiki?PimplIdiom)
Compilation Firewalls (http://www.gotw.ca/gotw/024.htm)
The Fast Pimpl Idiom (http://www.gotw.ca/gotw/028.htm)

See also

References

External links

https://en.wikipedia.org/wiki/Binary_compatibility
https://en.wikipedia.org/wiki/Qt_(toolkit)
https://en.wikipedia.org/wiki/KDE
https://en.wikipedia.org/wiki/Application_binary_interface
https://en.wikipedia.org/wiki/Handle_(computing)
https://en.wikipedia.org/wiki/Programming_idiom
http://community.qnx.com/sf/docman/do/downloadDocument/projects.toolchain/docman.root.articles/doc1150
https://en.wikipedia.org/wiki/Bruce_Eckel
http://web.mit.edu/merolish/ticpp/Chapter05.html
https://archive.org/details/thinkinginc00ecke
https://en.wikipedia.org/wiki/ISBN_(identifier)
https://en.wikipedia.org/wiki/Special:BookSources/0-13-979809-9
http://ddj.com/cpp/205918714
https://en.wikipedia.org/wiki/Dr._Dobb%27s_Journal
http://www.gotw.ca/publications/mill05.htm
http://groups.google.es/group/comp.lang.ada/msg/a886bf7922727acf
https://en.wikipedia.org/wiki/Usenet_newsgroup
news:comp.lang.ada
https://community.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B%2B#Using_a_d-Pointer
https://wiki.qt.io/D-Pointer
http://c2.com/cgi/wiki?PimplIdiom
http://www.gotw.ca/gotw/024.htm
http://www.gotw.ca/gotw/028.htm

3/12/22, 5:22 PM Opaque pointer - Wikipedia

https://en.wikipedia.org/wiki/Opaque_pointer#C++ 6/6

D-Pointers (https://community.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B%2B#Using_a_d-Pointer) — KDE TechBase
When you "XOR the pointer with a random number"[1] (http://blogs.msdn.com/michael_howard/archive/2006/01/30/520200.aspx)[2] (http://ud
repper.livejournal.com/13393.html), the result is a "really opaque" pointer [3] (http://www.iecc.com/gclist/GC-faq.html#GC,%20C,%20and%20
C++).
Making Pimpl Easy (http://www.ddj.com/cpp/205918714), Vladimir Batov

Retrieved from "https://en.wikipedia.org/w/index.php?title=Opaque_pointer&oldid=1039911004"

This page was last edited on 21 August 2021, at 14:27 (UTC).

Text is available under the Creative Commons Attribution-ShareAlike License 3.0;
additional terms may apply. By using this site, you agree to the Terms of Use and Privacy
Policy. Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc., a non-profit organization.

https://community.kde.org/Policies/Binary_Compatibility_Issues_With_C%2B%2B#Using_a_d-Pointer
http://blogs.msdn.com/michael_howard/archive/2006/01/30/520200.aspx
http://udrepper.livejournal.com/13393.html
http://www.iecc.com/gclist/GC-faq.html#GC,%20C,%20and%20C++
http://www.ddj.com/cpp/205918714
https://en.wikipedia.org/w/index.php?title=Opaque_pointer&oldid=1039911004
https://en.wikipedia.org/wiki/Wikipedia:Text_of_Creative_Commons_Attribution-ShareAlike_3.0_Unported_License
https://foundation.wikimedia.org/wiki/Terms_of_Use
https://foundation.wikimedia.org/wiki/Privacy_policy
https://www.wikimediafoundation.org/

